z-logo
open-access-imgOpen Access
Development and characterization of effervescent floating tablet of famotidine for treatment of peptic ulcer
Author(s) -
Shilpi Sahu,
Vivek Jain,
Sunil K. Jain,
Pushpendra Kumar Jain
Publication year - 2021
Publication title -
journal of drug delivery and therapeutics
Language(s) - English
Resource type - Journals
ISSN - 2250-1177
DOI - 10.22270/jddt.v11i5-s.5118
Subject(s) - famotidine , bioavailability , sodium bicarbonate , drug , dosage form , pharmacology , drug delivery , friability , chemistry , biomedical engineering , chromatography , medicine , first pass effect , organic chemistry
Floating drug delivery systems (FDDS) are utilized to target drug discharge in the stomach or to the upper parts of intestine. Famotidine has been the most extensively used drug for the management of peptic ulcer for various decades. The current study concerns the development and evaluation of floating tablets of famotidine which, after oral administration, are planned to extend the gastric residence time, enhance drug bioavailability and aim the gastric ulcer. A FDDS was expanded using gas-forming agents, like sodium bicarbonate, citric acid and hydrocolloids, like hydroxypropyl methylcellulose (HPMC) and carbopol 934P. The prepared tablets were evaluated in terms of their pre-compression parameters, physical characteristics, buoyancy, buoyancy lag-time, in vitro release, and swelling index. The formulations were optimized for the different viscosity grades of HPMC, carbopol 934P and its concentrations and combinations. The consequences of the in vitro release studies demonstrated that the optimized formulation (F6) could sustain drug release (98%) for 24 h and remain buoyant for 24 hr. Optimized formulation (F6) showed no considerable change in physical appearance, drug content, total buoyancy time or in vitro dissolution study after storage at 40°C/75% RH for 3 months. Lastly the tablet formulations establish to be economical and may conquer the draw backs associated with the drug during its absorption. Keywords: Famotidine, Floating drug delivery system, Hydrocolloids, Gastric residence time.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here