
In-Silico Evaluation of Tiryaq-E-Wabai, an Unani Formulation for its Potency against SARS-CoV-2 Spike Glycoprotein and Main Protease
Author(s) -
Noor Zaheer Ahmed,
Dicky John Davis,
Noman Anwar,
Asim Ali Khan,
Ram Pratap Meena,
Zeba Afnaan,
Meera Devi
Publication year - 2021
Publication title -
journal of drug delivery and therapeutics
Language(s) - English
Resource type - Journals
ISSN - 2250-1177
DOI - 10.22270/jddt.v11i4-s.4993
Subject(s) - in silico , potency , pharmacology , docking (animal) , traditional medicine , virology , biology , computational biology , in vitro , medicine , biochemistry , veterinary medicine , gene
COVID-19 was originated in Wuhan, China, in December 2019 and has been declared a pandemic disease by WHO. The number of infected cases continues unabated and so far, no specific drug approved for targeted therapy. Hence, there is a need for drug discovery from traditional medicine. Tiryaq-e-Wabai is a well-documented formulation in Unani medicine for its wide use as prophylaxis during epidemics of cholera, plague and other earlier epidemic diseases. The objective of the current study is to generate in-silico evidence and evaluate the potency of Tiryaq-e-Wabai against SARS-CoV-2 spike (S) glycoprotein and main protease (3CLpro). The structures of all phytocompounds used in this study were retrieved from PubChem database and some were built using Marvin Sketch. The protein structure of the SARS-CoV-2 S glycoprotein and 3CLpro was retrieved from the PDB ID: 6LZG and 7BQY respectively. AutoDock Vina was used to predict top ranking poses with best scores. The results of the molecular docking showed that phytocompounds of Tiryaq-e-Wabai exhibited good docking power with spike glycoprotein and 3CLpro. Among tested compounds Crocin from Zafran and Aloin A from Sibr showed strong binding to spike glycoprotein and 3CLpro respectively. Molecular dynamics simulation confirmed the stability of the S glycoprotein-Crocin and 3CLpro-Aloin A complexes. The Unani formulation Tiryaq-e-Wabai has great potential to inhibit the SARS-CoV-2, which have to be substantiated with further in-vitro and in-vivo studies.
Keywords: In-silico study, SARS-CoV-2, Tiryaq-e-Wabai, Unani formulation, Crocin, Aloin A