z-logo
open-access-imgOpen Access
Hydraulic resistance accompanying waterjet cutting
Author(s) -
L. V. Volgina,
I. Gusev
Publication year - 2020
Publication title -
vestnik mgsu
Language(s) - English
Resource type - Journals
eISSN - 2304-6600
pISSN - 1997-0935
DOI - 10.22227/1997-0935.2020.3.399-408
Subject(s) - abrasive , hydraulic resistance , transmission (telecommunications) , flow (mathematics) , flow resistance , mechanical engineering , hydraulic machinery , phase (matter) , pipeline (software) , petroleum engineering , computer science , mechanics , environmental science , engineering , physics , electrical engineering , quantum mechanics
. Two-phase flow transmission is a complex process exposed to the influence of numerous factors. Its characteristics may depend on the physical properties of a flowing medium and on the properties of a pipeline, flow velocities, etc. A research into new types of hydraulic systems serves to identify the parameters that characterize the processes that accompany their transmission, especially if a multi-component flow is analyzed (a mix of water and abrasive particles). The mission of the research is to identify the value of hydraulic resistance coefficient in the course of transmission of a two-phase flow, or a mix of water and an abrasive. Materials and methods. A physics experiment, mathematical data processing methods, data description. Results. The co-authors have identified the hydraulic resistance coefficient value in the course of the mix transmission, as well as the parameters characterizing supplementary pressure losses in the course of the abrasive transmission. The experimental research enabled the co-authors to identify maximal water and mix application distances that reach 317 and 290 meters. Conclusions. The results, obtained by the co-authors, are the consequence of the pressure losses that occur in the course of mix transmission and the coefficients that characterize it. The flows considered in the article are used in the systems whose parameters are considerably different from those of traditional hydraulic engineering systems; therefore, any theoretical results obtained by the co-authors need experimental verification. Further, similar systems having different parameters must also be exposed to research to identify the relation between the pressure loss and the abrasive consumption rate and amount. The practical value of the research consists in the identification of maximal water and mix transmission and application distances providing that the operating parameters of the systems remain unchanged.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here