Open Access
Boundary value problemfor multidimensional fractional advection-dispersion equation
Author(s) -
Хасамбиев Мохаммад Вахаевич
Publication year - 2015
Publication title -
vestnik mgsu
Language(s) - English
Resource type - Journals
eISSN - 2304-6600
pISSN - 1997-0935
DOI - 10.22227/1997-0935.2015.5.35-43
Subject(s) - fractional calculus , mathematics , fractal , operator (biology) , differential equation , differential operator , quantum nonlocality , ordinary differential equation , mathematical analysis , calculus (dental) , physics , quantum mechanics , medicine , biochemistry , chemistry , dentistry , repressor , quantum entanglement , transcription factor , quantum , gene
In recent time there is a very great interest in the study of differential equations of fractional order, in which the unknown function is under the symbol of fractional derivative. It is due to the development of the theory of fractional integro-differential theory and application of it in different fields.The fractional integrals and derivatives of fractional integro-differential equations are widely used in modern investigations of theoretical physics, mechanics, and applied mathematics. The fractional calculus is a very powerful tool for describing physical systems, which have a memory and are non-local. Many processes in complex systems have nonlocality and long-time memory. Fractional integral operators and fractional differential operators allow describing some of these properties. The use of the fractional calculus will be helpful for obtaining the dynamical models, in which integro-differential operators describe power long-time memory by time and coordinates, and three-dimensional nonlocality for complex medium and processes.Differential equations of fractional order appear when we use fractal conception in physics of the condensed medium. The transfer, described by the operator with fractional derivatives at a long distance from the sources, leads to other behavior of relatively small concentrations as compared with classic diffusion. This fact redefines the existing ideas about safety, based on the ideas on exponential velocity of damping. Fractional calculus in the fractal theory and the systems with memory have the same importance as the classic analysis in mechanics of continuous medium.In recent years, the application of fractional derivatives for describing and studying the physical processes of stochastic transfer is very popular too. Many problems of filtration of liquids in fractal (high porous) medium lead to the need to study boundary value problems for partial differential equations in fractional order.In this paper the authors first considered the boundary value problem for stationary equation for mass transfer in super-diffusion conditions and abnormal advection. Then the solution of the problem is explicitly given. The solution is obtained by the Fourier’s method.The obtained results will be useful in liquid filtration theory in fractal medium and for modeling the temperature variations in the heated bar.