z-logo
open-access-imgOpen Access
Perbandingan Metode Klasifikasi Berita Hoaks Berbahasa Indonesia Berbasis Pembelajaran Mesin
Author(s) -
Muhammad Athaillah,
Yufiz Azhar,
Yuda Munarko
Publication year - 2020
Publication title -
jurnal repositor
Language(s) - English
Resource type - Journals
eISSN - 2716-1382
pISSN - 2714-7975
DOI - 10.22219/repositor.v2i5.692
Subject(s) - humanities , mathematics , computer science , art
AbstrakKlasifiaksi berita hoaks merupakan salah satu aplikasi kategorisasi teks. Berita hoaks harus diklasifikasikan karena berita hoaks dapat mempengaruhi tindakan dan pola pikir pembaca. Dalam proses klasifikasi pada penelitian ini menggunakan beberapa tahapan yaitu praproses, ekstraksi fitur, seleksi fitur dan klasifikasi. Penelitian ini bertujuan membandingkan dua algoritma yaitu algoritma Naïve Bayes dan Multinomial Naïve Bayes, manakah dari kedua algoritma tersebut yang lebih efektif dalam mengklasifikasikan berita hoaks. Data yang digunakan dalam penelitian ini berasal dari www.trunbackhoax.id untuk data berita hoaks sebanyak 100 artikel dan data berita non-hoaks berasal dari kompas.com, detik.com berjumlah 100 artikel. Data latih berjumlah 140 artikel dan data uji berjumlah 60 artikel. Hasil perbandingan algoritma Naïve Bayes memiliki nilai F1-score sebesar 0,93 dan nilai F1-score Multinomial Naïve Bayes sebesar 0,92. Abstarct Classification hoax news is one of text categorizations applications. Hoax news must be classified because the hoax news can influence the reader actions and thinking patterns. Classification process in this reseacrh uses several stages, namely  preprocessing, features extraxtion, features selection and classification. This research to compare Naïve Bayes algorithm and Multinomial Naïve Bayes algorithm, which of the two algorithms is more effective on classifying hoax news. The data from this research  from  turnbackhoax.id as hoax news of 100 articles and non-hoax news from kompas.com, detik.com of 100 articles. Training data 140 articles dan test data 60 articles. The result of the comparison of algorithms  Naïve Bayes has an F1-score value of 0,93 and Naïve Bayes has an F1-score value of  0,92.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here