
Prediction Of Use Of Electric Kwh Using Support Vector Regression (SVR) Method (Case Study: Pt Pln (Persero) Rayon Seririt)
Author(s) -
Rima Mediana,
Setio Basuki,
Nur Hayatin
Publication year - 2020
Publication title -
jurnal repositor (cetak)
Language(s) - English
Resource type - Journals
eISSN - 2716-1382
pISSN - 2714-7975
DOI - 10.22219/repositor.v2i4.106
Subject(s) - mathematics
AbstrakPeranan listrik sangat penting bagi kehidupan masyarakat, begitu pentingnya peranan listrik tentu saja berdampak pada kebutuhan listrik yang begitu besar, maka PT. PLN (Persero) Rayon Seririt sebagai penyedia tenaga listrik harus bisa memprediksi besarnya peggunaan listrik rumah tangga setiap harinya. Selain itu menyebabkan semakin besar pula pemakian kwh listik, apabila pemakaian kwh listrik tidak diolah dengan baik akan menimbulkan beban energi listrik yang tidak terbendung. Dengan permasalahan yang telah diuraikan, penelitian ini menerapkan algoritma Support Vector Regression dalam Prediksi Pemakain KWH Listrik untuk mengetahui besarnya pemakaian kwh listrik yang akan datang. Berdasarkan hasil pengujian yang dilakukan hasil nilai akurasi terbaik Mean Absolute Error (MAE) sebesar 133560,1, Root Mean Squared Error (RMSE) sebesar 167664,1, dan Koefisien Korelasi sebesar 84,0 pada kernel polynomial. Sehingga algoritma Support Vector Regression dan fungsi kernel Radial Basis Function (RBF) cocok digunakan dalam memprediksi pemakaian kwh listrik.AbstractThe role of electricity is really significant for societies' live and it brings the huge impacts on the needs of electricity. This circumstance makes PT. PLN (Persero) Rayon Seririt as the provider of electricity must be able to predict the amount of household electricity usage steadily. This also causes the greater use of kwh electricity, if the use of kwh electricity is not treated properly, it will cause the burden of electrical energy is unstoppable. Through the problems that have been elaborated, this study implements the Support Vector Regression algorithm in the prediction of kwh electricity usage to know the amount of kwh electricity usage that will come.Based on the results of tests that have been conducted, the result of best accuracy value Mean Absolute Error (MAE) equal to 133560,1, Root Mean Squared Error (RMSE) equal to 133560,1, and Correlation Coefficient equal to 84,0 at Radial Base Function kernel. It means, the Support Vector Regression algorithm and Radial Basis Function kernel function (RBF) are suitable to predict the use of kwh electricity.