
Optimasi Rongga Terhadap Variasi Derajat Kevakuman Sebagai Isolator
Author(s) -
Mulyono Mulyono
Publication year - 2012
Publication title -
jurnal teknik industri
Language(s) - English
Resource type - Journals
eISSN - 2527-4112
pISSN - 1978-1431
DOI - 10.22219/jtiumm.vol11.no1.63-67
Subject(s) - natural convection , heat transfer , materials science , thermodynamics , thermal conductivity , cavity wall , vacuum insulated panel , thermal insulation , mechanics , composite material , chemistry , physics , layer (electronics)
In the world of industry, insulation materials are often utilized to maintain the temperature,either low or high. However, since the insulation materials often need to be thick, thus,costly, they are frequently deemed impractical. Therefore, in the attempt to replace the insulationmaterials, a cavity with low vacuum pressure is opted for. Yet, to attain a total (100%) airfreecavity is not an easy task. Such, the cavity usually still bears some amount of air pressurewhich results in natural heat convection through the two surfaces making up the cavity. Thetransfer coefficient of natural heat convection (h) is influenced by some factors, such as, the temperaturedifference, geometry of the cavity, cavity orientation, and characteristics of the fluid,for instance, its pressure, temperature, conductivity, specific gravity (density), and viscosity.The purpose of the study is to find answers to the following question: “How do vacuum pressurevariation and cavity ratio affect the rate of natural heat convection through the a cavity?” Pertinentto the question, the study was aimed to find the appropriate value of the vacuum pressurewhich can function well as an insulator. This study is significant in the attempt to lower downthe rate of heat transfer taking place in a system vis-à-vis the surrounding media. The studyfound out that the degree of emptiness of -60 cm Hg and =5.96, results in a lower rate of heattransfer compared with -20 cm Hg and -40 cm Hg. This means that the vacuum pressure of-60cm Hg bears a bigger thermal resistance than the -20 cm Hg and -40 cm Hg do.