z-logo
open-access-imgOpen Access
Breast Cancer Detection with Machine Learning
Author(s) -
Manav Mangukiya
Publication year - 2022
Publication title -
international journal for research in applied science and engineering technology
Language(s) - English
Resource type - Journals
ISSN - 2321-9653
DOI - 10.22214/ijraset.2022.40204
Subject(s) - machine learning , breast cancer , decision tree , artificial intelligence , adaboost , support vector machine , cancer , computer science , naive bayes classifier , random forest , algorithm , medicine
Breast cancer is one of the leading cause for the death of women. In women Breast cancer is treated as the most significant issue. According to statistics released by the International Agency for Research on Cancer (IARC) in December 2020, Breast cancer has now overtaken lung cancer as the most commonly diagnosed cancer in women worldwide. Early diagnosis of this helps to prevent the cancer. If breast cancer is detected in early stage, then Survival rate is very high. Machine Learning methods are effective ways to classify data. Especially in the medical field, where those methods are widely used in diagnosis and analysis for decision making. In this paper, Data Visualization and performance comparisons between different machine learning algorithms: Support Vector Machine (SVM), Decision Tree, Naive Bayes (NB), K Nearest Neighbours (k-NN), Adaboost, XGboost and Random Forest conducted on Wisconsin breast cancer Dataset. The main objective is to evaluate the accuracy in the classification of data in terms of efficiency and effectiveness of each algorithm in terms of accuracy, precision, sensitivity and specificity. Our aim is to review various Techniques To detect early, efficiently and accurately Using Machine Learning. Experimental results show that XGboost offers the highest accuracy (98.24%) with the lowest error rate. Keywords: Breast Cancer, Machine Learning, Wisconsin, Algorithms, Detection

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here