z-logo
open-access-imgOpen Access
Prediction of Air Pollution in Smart Cities Using Machine Learning Techniques
Author(s) -
Mrs. Gowri G
Publication year - 2021
Publication title -
international journal for research in applied science and engineering technology
Language(s) - English
Resource type - Journals
ISSN - 2321-9653
DOI - 10.22214/ijraset.2021.39241
Subject(s) - computer science , predictive power , dynamic time warping , machine learning , artificial intelligence , time series , air pollution , deep learning , software deployment , big data , data mining , pollution , ecology , philosophy , chemistry , organic chemistry , epistemology , biology , operating system
Air-pollution is one of the main threats for developed societies. According to the World Health Organization (WHO), pollution is the main cause of deaths among children aged under five years. Smart cities are called to play a decisive role to increase such pollution in real-time. The increase in air pollution due to fossil fuel consumption as well as its ill effects on the climate has made air pollution forecasting an important research area in today’s times. Deployment of the Internet of things (IoT) based sensors has considerably changed the dynamics of predicting air quality. prediction of spatio-temporal data has been one of the major challenges in creating a good predictive model. There are many different approaches which have been used to create an accurate predictive model. Primitive predictive machine learning algorithms like simple linear regression have failed to produce accurate results primarily due to lack of computing power but also due to lack of optimization techniques. A recent development in deep learning as well as improvements in computing resources has increased the accuracy of predicting time series data. However, with large spatio-temporal data sets spanning over years. Employing regression models on the entire data can cause per date predictions to be corrupted. In this work, we look at dealing with pre-processing the times series. However, pre-processing involves a similarity measure, we explore the use of Dynamic Time Warping (DTW). K-means is then used to classify the spatio-temporal pollution data over a period of 16 years from 2000 to 2016. Here Mean Absolute error (MAE) and Root Mean Square Error (RMSE) have been used as evaluation criteria for the comparison of regression models. Keywords: Spatio-temporal data, Primitive predictive machine learning algorithms, regression models

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here