
Sentiment Analysis on Twitter Hashtag Datasets
Author(s) -
Ganesh K. Shinde
Publication year - 2021
Publication title -
international journal for research in applied science and engineering technology
Language(s) - English
Resource type - Journals
ISSN - 2321-9653
DOI - 10.22214/ijraset.2021.39201
Subject(s) - trigram , bigram , sentiment analysis , computer science , support vector machine , artificial intelligence , principle of maximum entropy , machine learning , classifier (uml) , natural language processing , data mining
Sentiment Analysis has improvement in online shopping platforms, scientific surveys from political polls, business intelligence, etc. In this we trying to analyse the twitter posts about Hashtag like #MakeinIndia using Machine Learning approach. By doing opinion mining in a specific area, it is possible to identify the effect of area information in sentiment analysis. We put forth a feature vector for classifying the tweets as positive, negative and neutral. After that applied machine learning algorithms namely: MaxEnt and SVM. We utilised Unigram, Bigram and Trigram Features to generate a set of features to train a linear MaxEnt and SVM classifiers. In the end we have measured the performance of classifier in terms of overall accuracy. Keywords: Sentiment analysis, support vector machine, maximum entropy, N-gram, Machine Learning