z-logo
open-access-imgOpen Access
Thief Detection with Deep Learning using Yolo Predictive Analysis
Author(s) -
S. Pavithra
Publication year - 2021
Publication title -
international journal for research in applied science and engineering technology
Language(s) - English
Resource type - Journals
ISSN - 2321-9653
DOI - 10.22214/ijraset.2021.39187
Subject(s) - computer science , deep learning , artificial intelligence , closed circuit , activity detection , computer security , real time computing , machine learning , telecommunications
This paper discusses thief detection, which is one of the important applications of suspicious human activity detections. Individual safety is a major concern in our busy scheduling life. The main reason for this concern is an ever-increasing number of activities that pose a threat. A simple closed-circuit television (CCTV) installation system is not sufficient enough because it usually requires a person to be alert and monitoring the cameras always is inefficient. The necessitates for the development of a fully automated security system detects anomalous activities in real-time, and provides instant assistance to the victim. As a consequence, we proposed a framework that examines and detects suspicious human activity from real-time Surveillance video using deep learning techniques and generates an alert if abnormal activity occurs. The method was tested on a dataset with both normal and abnormal activity and yielded better results. Keywords: Thief detection, deep-learning, surveillance video, predictive analysis, yolo.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here