Open Access
Experimental Investigation of Similar & Dissimilar Joints on Stainless Steel with TIG & MIG Welded
Author(s) -
Seeram Roopa
Publication year - 2021
Publication title -
international journal for research in applied science and engineering technology
Language(s) - English
Resource type - Journals
ISSN - 2321-9653
DOI - 10.22214/ijraset.2021.39106
Subject(s) - materials science , welding , gas tungsten arc welding , metallurgy , ultimate tensile strength , flash welding , inert gas , filler metal , composite material , electric resistance welding , joint (building) , tungsten , gas metal arc welding , corrosion , bending , heat affected zone , arc welding , structural engineering , engineering
Abstract: Now days, most of the structural fabrications possess welded joints that are produced using suitable welding technique. However, the joining of thick plates in a single pass welding is a cumbersome task to many fabricators. Likewise, the selection of welding technique, filler wire and welding condition for the similar and dissimilar welding of several metals is at the development stage. The similar and dissimilar metal joints of have been emerged as a structural material for various industrial applications which provides good combination of mechanical properties like strength, corrosion resistance with lower cost. Selections of joining process for such a material are difficult because of their physical and chemical properties. The stainless steel of similar and dissimilar material joints are very common structural applications joining of stainless steel is very critical because of carbon precipitation and loss of chromium leads to increase in porosity affects the quality of joint leads deteriorate strength. In the present study, stainless steel of grades 310 and 316 were welded by Tungsten Inert Gas (TIG) and Metal Inert Gas (MIG) welding with compound flux of 50 % SiO2 + 50 % TiO2 processes. The mechanical behavior like hardness, tensile strength and bending properties of similar and dissimilar metal joints were investigated. Keywords: Mechanical Properties, ATIG, MIG, SS310, SS316, Micro Structure.