
Optimization of Sisal Fiber, Glass Fiber and Alumina- Based Hybrid Composite for Flexural Strength Using Taguchi Technique
Author(s) -
R Veenapani
Publication year - 2021
Publication title -
international journal for research in applied science and engineering technology
Language(s) - English
Resource type - Journals
ISSN - 2321-9653
DOI - 10.22214/ijraset.2021.38428
Subject(s) - taguchi methods , flexural strength , sisal , materials science , fiber , composite material , composite number , orthogonal array , glass fiber , natural fiber
In the current study, flexural strength of combination of natural and synthetic fiber with particle filled hybrid composites have been studied. The flexural strength of the hybrid composite mainly depends on the proportion of the sisal fiber weight, glass fiber weight and alumina weight. Taguchi technique has been applied to find the optimized parameters of the developed hybrid composites. Results were obtained for the L9 orthogonal combination from experimentation. The results were analysed with the help of Signal/Noise (S/N) Ratio, Main effect plot and Analysis of variance (ANOVA) using Mini Tab 19. Regression equation are developed for all three reinforcements separately. From the current study it was observed that the flexural strength of the hybrid composite mainly depends on the sisal fiber precent that the other two reinforcements. Based on the experimental observations the maximum ultimate flexural strength was found to be 145.97 MPa for optimised input parameters as 20% of sisal fiber, 20% of glass fiber and 2% of alumina. Keywords: Taguchi technique, ANOVA, Flexural strength, Sisal fiber, Glass Fiber, Alumina