
Using Machine Learning to Classify Music Genre
Author(s) -
Rachaell Nihalaani
Publication year - 2021
Publication title -
international journal for research in applied science and engineering technology
Language(s) - English
Resource type - Journals
ISSN - 2321-9653
DOI - 10.22214/ijraset.2021.38365
Subject(s) - random forest , naive bayes classifier , computer science , artificial intelligence , machine learning , support vector machine , decision tree , artificial neural network , soul , philosophy , theology
As Plato once rightfully said, ‘Music gives a soul to the universe, wings to the mind, flight to the imagination and life to everything.’ Music has always been an important art form, and more so in today’s science-driven world. Music genre classification paves the way for other applications such as music recommender models. Several approaches could be used to classify music genres. In this literature, we aimed to build a machine learning model to classify the genre of an input audio file using 8 machine learning algorithms and determine which algorithm is the best suitable for genre classification. We have obtained an accuracy of 91% using the XGBoost algorithm. Keywords: Machine Learning, Music Genre Classification, Decision Trees, K Nearest Neighbours, Logistic regression, Naïve Bayes, Neural Networks, Random Forest, Support Vector Machine, XGBoost