
A Hybrid Recommendation System for Video Games: Combining Content-based & Collaborative Filtering
Author(s) -
Aditya Manikantan
Publication year - 2021
Publication title -
international journal for research in applied science and engineering technology
Language(s) - English
Resource type - Journals
ISSN - 2321-9653
DOI - 10.22214/ijraset.2021.38246
Subject(s) - collaborative filtering , cosine similarity , computer science , similarity (geometry) , recommender system , representation (politics) , autoencoder , information retrieval , content (measure theory) , artificial intelligence , image (mathematics) , pattern recognition (psychology) , mathematics , artificial neural network , mathematical analysis , politics , political science , law
Recommending video games can be trickier than movies. When it comes to selecting a video game, many factors are involved such as its genre, platform on which it’s played, duration of main and side quests, and more. However, recommending games based on just these features won’t suffice as a person who, for example, enjoys a certain genre of game can equally enjoy a vastly different genre. Therefore, a scoring mechanism is required which takes into account both, features of a game (contentbased filtering) and also studies the buying patterns of people playing a particular game (collaborative filtering). In this paper I have proposed a way to take into account both content-based and collaborative filtering into the final recommendation. I have used cosine similarity to quantify the similarity between the features of games. Along with this, I have employed a Deep fullyconnected AutoEncoder (DAE) to generalize the implicit data representation of an user’s buying patterns. Finally, I present a novel approach to combine the scores of these filtering techniques in such a way that it gives equal weightage to both. In other words, they both have equal influence over the final list of the top 10 games recommended to the user. Keywords: Hybrid Recommender, Collaborative filtering, Content-based filtering, Cosine similarity, AutoEncoder.