z-logo
open-access-imgOpen Access
Carbon Capture and Sequestration: A comprehensive Review
Author(s) -
Naimish Agarwal
Publication year - 2021
Publication title -
international journal for research in applied science and engineering technology
Language(s) - English
Resource type - Journals
ISSN - 2321-9653
DOI - 10.22214/ijraset.2021.37993
Subject(s) - carbon capture and storage (timeline) , greenhouse gas , fossil fuel , environmental science , bio energy with carbon capture and storage , carbon sequestration , greenhouse gas removal , carbon dioxide , carbon fibers , global warming , waste management , combustion , climate change mitigation , climate change , engineering , computer science , geology , chemistry , oceanography , organic chemistry , algorithm , composite number
More than ever, the fate of anthropogenic CO2 emissions is in our hands. Since the advent of industrialization, there has been an increase in the use of fossil fuels to fulfil rising energy demands. The usage of such fuels results in the release of carbon dioxide (CO2) and other greenhouse gases, which result in increased temperature. Such warming is extremely harmful to life on Earth. The development of technology to counter the climate change and spreading it for widespread adoptions. We need to establish a framework to provide overarching guidance for the well-functioning of technology and mechanism development of Carbon Capture and Storage. Carbon capture and storage (CCS) is widely regarded as a critical approach for achieving the desired CO2 emission reduction. Various elements of CCS, such as state-of-the-art technology for CO2 collection, separation, transport, storage, politics, opportunities, and innovations, are examined and explored in this paper. Carbon capture and storage is the process of capturing and storing carbon dioxide (CO2) before it is discharged into the environment (CCS). The technology can capture high amounts of CO2 produced by fossil fuel combustion in power plants and industrial processes. CO2 is compressed and transferred by pipeline, ship, or road tanker once it has been captured. CO2 can then be piped underground, usually to depths of 1km or more, and stored in depleted oil and gas reservoirs, coalbeds, or deep saline aquifers, depending on the geology. CO2 could also be used to produce commercially marketable products. With the goal of keeping world average temperatures below 1.5°C (2.7°F) and preventing global average temperature rises of more than 2°C (3.6°F) over pre-industrial levels, CCS model should be our priority to be implemented with the proper economical map

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here