Open Access
Neural Machine Translation Using Sequence Modeling
Author(s) -
N Revathi
Publication year - 2021
Publication title -
international journal for research in applied science and engineering technology
Language(s) - English
Resource type - Journals
ISSN - 2321-9653
DOI - 10.22214/ijraset.2021.37687
Subject(s) - machine translation , computer science , artificial intelligence , recurrent neural network , natural language processing , artificial neural network , example based machine translation , deep learning , translation (biology) , sequence (biology) , encoder , language model , speech recognition , biochemistry , chemistry , genetics , biology , messenger rna , gene , operating system
Abstract: Language is a main mode of communication, and translation is a critical tool for understanding information in a foreign language. Without the help of human translators, machine translation allows users to absorb unfamiliar linguistic material. The main goal of this project is to create a practical language translation from English to Hindi. Given its relevance and potential in the English-Hindi translation, machine translation is an efficient way to turn content into a new language without employing people. Among all available translation machines, Neural Machine Translation (NMT) is one of the most efficient ways. So, in this case, we're employing Sequence to Sequence Modeling, which includes the Recurrent Neural Network (RNN), Long and Short Term Memory (LSTM), and Encoder-Decoder methods. Deep Neural Network (DNN) comprehension and principles of deep learning, i.e. machine translation, are disclosed in the field of Natural Language Processing (NLP). In machine reclining techniques, DNN plays a crucial role. Keywords: Sequence to Sequence, Encoder-Decoder, Recurrent Neural Network, Long & Short term Memory, Deep Neural Network.