z-logo
open-access-imgOpen Access
Palmprint Recognition in Uncontrolled and Unco-operative Environment
Author(s) -
Jayakrishnan S Kumar
Publication year - 2021
Publication title -
international journal for research in applied science and engineering technology
Language(s) - English
Resource type - Journals
ISSN - 2321-9653
DOI - 10.22214/ijraset.2021.37646
Subject(s) - biometrics , artificial intelligence , computer science , identification (biology) , computer vision , pattern recognition (psychology) , feature (linguistics) , linguistics , philosophy , botany , biology
On-line palmprint recognition and latent palmprint identification unit two branches of palmprint studies. The previous uses middle-resolution footage collected by a camera in an exceedingly} very well-controlled or contact-based surroundings with user cooperation for industrial applications and so the latter uses high resolution latent palmprints collected in crime scenes for rhetorical investigation. However, these two branches do not cowl some palmprint footage that have the potential for rhetorical investigation. Attributable to the prevalence of smartphone and shopper camera, further proof is at intervals the variability of digital footage taken in uncontrolled and uncooperative surroundings. However, their palms area unit typically noticeable. To visualize palmprint identification on footage collected in uncontrolled and uncooperative surroundings, a novel palmprint info is established Associate in nursing AN end-to-end deep learning rule is projected. The new data named NTU Palmprints from the net (NTU-PI-v1) contains 7881 footage from 2035 palms collected from the net. The projected rule consists of Associate in Nursing alignment network and a feature extraction network and is end-to-end trainable. The projected rule is compared with the progressive on-line palmprint recognition ways that and evaluated on three public contactless palmprint infos, IITD, CASIA, and PolyU and a couple of new databases, NTU-PI-v1 and NTU contactless palmprint info. The experimental results showed that the projected rule outperforms the current palmprint recognition ways that. Keywords: Biometrics, criminal and victim identification, forensics, palmprint recognition

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here