
Fuzzy Multi-Objective Genetic Algorithm Based Resource Constrained Time-Cost Trade-Off Model under Uncertain Environment
Author(s) -
Ashish Sharma
Publication year - 2021
Publication title -
international journal for research in applied science and engineering technology
Language(s) - English
Resource type - Journals
ISSN - 2321-9653
DOI - 10.22214/ijraset.2021.37565
Subject(s) - mathematical optimization , fuzzy logic , genetic algorithm , computer science , pareto principle , set (abstract data type) , operations research , multi objective optimization , time constraint , duration (music) , constraint (computer aided design) , process (computing) , engineering , mathematics , artificial intelligence , mechanical engineering , art , literature , law , political science , programming language , operating system
In every construction project, the time and cost are the two most important objectives/factors to be considered. Clients and contractors should strive to optimize the project time and cost to maximize the return. Resources are also one of the major constraints of the construction projects. In recent years, several studies have been conducted to optimize the time and cost of project under constraint conditions of resources. Since most studies assume the time and cost as deterministic parameters, uncertainties should be considered in estimating the time and cost of the project's activities when minimizing the duration and cost of the project. For this purpose, this paper embeds the fuzzy logic to handle the uncertainties in estimating the time and cost. Besides, the multi-objective genetic algorithm (MOGA) is used to develop the resourceconstrained time-cost trade-off model. Alpha-cut approach is utilized to define the accepted risk level of decision maker. The efficiency of the proposed model is demonstrated through solvinga case study project of highway construction. The results of case study project provide a set of Pareto-optimal solutions. The developed model encourage the decision making process by choosing specified risk levels and utilizing the related Pareto-front. Keywords: Construction projects, time-cost trade-off, uncertainties, fuzzy logic, MOGA,Pareto-optimal solution.