z-logo
open-access-imgOpen Access
Slope Stability Analysis of Highway Embankment with Different Height and Slope by Varying the Properties of Soil
Author(s) -
R. Y. Kale
Publication year - 2021
Publication title -
international journal for research in applied science and engineering technology
Language(s) - English
Resource type - Journals
ISSN - 2321-9653
DOI - 10.22214/ijraset.2021.36999
Subject(s) - levee , cohesion (chemistry) , geotechnical engineering , friction angle , factor of safety , slope stability , safety factor , internal friction , slope failure , slope stability analysis , environmental science , mathematics , geology , materials science , chemistry , organic chemistry , composite material
The analysis of slope stability has received wide attention nowdays because of its practical importance. To provide steepest slopes which are stable and safe, various investigation are ongoing. The main objective of the project is to analyze slope of embankment by calculating factor of safety. So that an appropriate side slope can be chosen and use for the construction of highway. For this, limit equilibrium analysis has been done using GEO5 software. Swedish circle method (Graphically) has been used to performed manually analysis. In the present study, data collected from the site which is located near Shivni Village, Ner-Yavatmal road. “The construction of Samruddhi Mahamarg” is being constructed at that site. It is having high embankment heights upto 9meter. The values of unit weight of soil(γ), angle of internal friction(ϕ), cross sectional details of embankment and side slope of embankment were taken from that site. In this study, embankment of different heights (3 to 9m) under different 8 slopes (i.e. 1:2, 1:1.75, 1:1.5, 1:1.25, 1:1, 1:0.83, 1:0.7, 1:0.58), different values of cohesion and friction angle were considered. The analysis has been performed on two different cases: Case I stands for single layer of soil and Case II stands for double layer of soil by varying the value of cohesion and angle of internal friction the changes occur in the value of factor of safety were checked by comparing both results obtained by manual method and by GEO5 software. From this investigation it is found that increasing the value of cohesion and angle of internal friction, the factor of safety against slope stability increases. And for a particular height of embankment factor of safety increases with increase in the flatness of slope. From these results, it is better to use C-ϕ soil rather than ϕ soil as it gives maximum FOS as compared to sandy soil. From the analysis of doubled layered soil, it has been concluded that condition 2(with both soil cohesive) found satisfactory better with respect to condition 1(when one soil cohesive and one soil sandy). By considering condition 2 (both soil cohesive), it has been found that the increment of 25 to 30% in the FOS of condition 1 takes place.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here