
Implementation Analysis of Data Classification Approach for Sentiment Classification
Author(s) -
Bhushan R. Chincholkar
Publication year - 2021
Publication title -
international journal for research in applied science and engineering technology
Language(s) - English
Resource type - Journals
ISSN - 2321-9653
DOI - 10.22214/ijraset.2021.36613
Subject(s) - sentiment analysis , computer science , ambiguity , artificial intelligence , focus (optics) , social media , quality (philosophy) , task (project management) , the internet , machine learning , data science , natural language processing , data mining , world wide web , philosophy , physics , management , epistemology , optics , economics , programming language
Sentiment analysis is one of the fastest growing fields with its demand and potential benefits that are increasing every day. Sentiment analysis aims to classify the polarity of a document through natural language processing, text analysis. With the help of internet and modern technology, there has bee n a tremendous growth in the amount of data. Each individual is in position to precise his/her own ideas freely on social media. All of this data can be analyzed and used in order to draw benefits and quality information. In this paper, the focus is on cyber-hate classification based on for public opinion or views, since the spread of hate speech using social media can have disruptive impacts on social sentiment analysis. In particular, here proposing a modified approach with two stage training for dealing with text ambiguity and classifying three type approach positive, negative and neutral sentiment, and compare its performance with those popular methods also as well as some existing fuzzy approaches. Afterword comparing the performance of proposed approach with commonly used sentiment classifiers which are known to perform well in this task. The experimental results indicate that our modified approach performs marginally better than the other algorithms.