
Plant Leaf Disease Prediction
Author(s) -
Vaishnavi Monigari
Publication year - 2021
Publication title -
international journal for research in applied science and engineering technology
Language(s) - English
Resource type - Journals
ISSN - 2321-9653
DOI - 10.22214/ijraset.2021.36582
Subject(s) - convolutional neural network , computer science , agriculture , artificial intelligence , plant disease , segmentation , image processing , feature (linguistics) , feature extraction , agricultural engineering , pattern recognition (psychology) , machine learning , image (mathematics) , microbiology and biotechnology , engineering , geography , biology , linguistics , philosophy , archaeology
The Indian economy relies heavily on agriculture productivity. A lot is at stake when a plant is struck with a disease that causes a significant loss in production, economic losses, and a reduction in the quality and quantity of agricultural products. It is crucial to identify plant diseases in order to prevent the loss of agricultural yield and quantity. Currently, more and more attention has been paid to plant diseases detection in monitoring the large acres of crops. Monitoring the health of the plants and detecting diseases is crucial for sustainable agriculture. Plant diseases are challenging to monitor manually as it requires a great deal of work, expertise on plant diseases, and excessive processing time. Hence, this can be achieved by utilizing image processing techniques for plant disease detection. These techniques include image acquisition, image filtering, segmentation, feature extraction, and classification. Convolutional Neural Network’s(CNN) are the state of the art in image recognition and have the ability to give prompt and definitive diagnoses. We trained a deep convolutional neural network using 20639 images on 15 folders of diseased and healthy plant leaves. This project aims to develop an optimal and more accurate method for detecting diseases of plants by analysing leaf images.