
Sentiment Analysis of Customer Product Reviews using deep Learning and Compare with other Machine Learning Techniques
Author(s) -
Amit Purohit
Publication year - 2021
Publication title -
international journal for research in applied science and engineering technology
Language(s) - English
Resource type - Journals
ISSN - 2321-9653
DOI - 10.22214/ijraset.2021.36202
Subject(s) - sentiment analysis , computer science , artificial intelligence , support vector machine , naive bayes classifier , natural language processing , sentence , product (mathematics) , machine learning , decision tree , process (computing) , geometry , mathematics , operating system
Sentiment analysis is defined as the process of mining of data, view, review or sentence to Predict the emotion of the sentence through natural language processing (NLP) or Machine Learning Techniques. The sentiment analysis involve classification of text into three phase “Positive”, “Negative” or “Neutral”. The process of finding user Opinion about the topic or Product or problem is called as opinion mining. Analyzing the emotions from the extracted Opinions are defined as Sentiment Analysis. The goal of opinion mining and Sentiment Analysis is to make computer able to recognize and express emotion. Using social media, E-commerce website, movies reviews such as Face book, twitter, Amazon, Flipkart etc. user share their views, feelings in a convenient way. Sentiment analysis in a machine learning approach in which machines classify and analyze the human’s sentiments, emotions, opinions etc. about the products. Out of the various classification models, Naïve Bayes, Support Vector Machine (SVM) and Decision Tree are used maximum times for the product analysis. The proposed approach will do better result as compare to other machine learning techniques.