
Movie Recommendation System
Author(s) -
Dinesh Shishodia
Publication year - 2021
Publication title -
international journal for research in applied science and engineering technology
Language(s) - English
Resource type - Journals
ISSN - 2321-9653
DOI - 10.22214/ijraset.2021.35929
Subject(s) - recommender system , computer science , set (abstract data type) , taste , world wide web , multimedia , information retrieval , psychology , neuroscience , programming language
This paper represents the overview of Approaches and techniques used in Movie Recommendation system. Recommendation system is used by many companies like Netflix, Amazon, Flipkart etc. It makes the user experience better and decrease the user efforts. It plays a very vital role in our day-to-day life. It is used in recommending Movies, Articles, News, Books, Music, Videos, People (Online Dating) etc. It learns from the user past behavior and based on that behavior it recommends item to the user. Likewise, in Movie Recommendation system movie is recommended to the user on the basis of movies watched, liked, rated by the user. In year 2020, approximate 10,000 movie were launched according to IDMB data. It saves a lot of times and efforts of the user by suggesting movies according to user taste and user don’t have to select a movie from a large set of movies.