
Autonomous Driving using CNN
Author(s) -
Vadik Amar
Publication year - 2021
Publication title -
international journal for research in applied science and engineering technology
Language(s) - English
Resource type - Journals
ISSN - 2321-9653
DOI - 10.22214/ijraset.2021.35771
Subject(s) - computer science , artificial intelligence , automation , convolutional neural network , robotics , pixel , convolution (computer science) , human–computer interaction , computer vision , simulation , real time computing , robot , artificial neural network , engineering , mechanical engineering
Human beings are currently addicted to automation and robotics technologies. The state-of-the-art in deep learning technologies and AI is the subject of this autonomous driving. Driving with automated driving systems promises to be safe, enjoyable, and efficient.. It is preferable to train in a virtual environment first and then move to a real-world one. Its goal is to enable a vehicle to recognise its surroundings and navigate without the need for human intervention. The raw pixels from a single front-facing camera were directly transferred to driving commands using a convolution neural network (CNN). This end-to-end strategy proved to be remarkably effective, The system automatically learns internal representations of the essential processing stages such as detecting useful road components using only the human steering angle as the training signal. We never expressly taught it to recognise the contour of roadways, for example. In comparison to explicit issue decomposition, such as lane marking detection, Our end-to-end solution optimises all processing processes at the same time, including path planning and control. We believe that this will lead to improved performance and smaller systems in the long run. Internal components will self-optimize to maximise overall system performance, resulting in improved performance.