z-logo
open-access-imgOpen Access
Human Activity Recognition using Machine Learning
Author(s) -
C Shraddha
Publication year - 2021
Publication title -
international journal for research in applied science and engineering technology
Language(s) - English
Resource type - Journals
ISSN - 2321-9653
DOI - 10.22214/ijraset.2021.35694
Subject(s) - random forest , activity recognition , computer science , artificial intelligence , machine learning , sitting , measure (data warehouse) , human–computer interaction , data mining , medicine , pathology
Activity recognition in humans is one of the active challenges that find its application in numerous fields such as, medical health care, military, manufacturing, assistive techniques and gaming. Due to the advancements in technologies the usage of smartphones in human lives has become inevitable. The sensors in the smartphones help us to measure the essential vital parameters. These measured parameters enable us to monitor the activities of humans, which we call as human activity recognition. We have applied machine learning techniques on a publicly available dataset. K-Nearest Neighbors and Random Forest classification algorithms are applied. In this paper, we have designed and implemented an automatic human activity recognition system that independently recognizes the actions of the humans. This system is able to recognize the activities such as Laying, Sitting, Standing, Walking, Walking downstairs and Walking upstairs. The results obtained show that, the KNN and Random Forest Algorithms gives 90.22% and 92.70% respectively of overall accuracy in detecting the activities.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here