z-logo
open-access-imgOpen Access
Automatic Personality Identification using Machine Learning
Author(s) -
Aditi Das
Publication year - 2021
Publication title -
international journal for research in applied science and engineering technology
Language(s) - English
Resource type - Journals
ISSN - 2321-9653
DOI - 10.22214/ijraset.2021.35386
Subject(s) - machine learning , artificial intelligence , computer science , personality , personality psychology , context (archaeology) , construct (python library) , deep learning , artificial neural network , process (computing) , psychology , social psychology , paleontology , biology , programming language , operating system
Machine Learning has made significant changes in the world making our life more easier and comfortable .One of the most exciting applications is the prediction of Personality automatically using different algorithms. Personality computing and emotive computing, where the popularity of temperament traits is important, have gained increasing interest and a spotlight in several analysis areas recently. These applications can powerfully predict the personality of a Person. The aim of this paper is to use a more rigorous construct Validation system to extend the potential of machine learning approaches to personality assessment. We have reviewed multiple recent applications of Machine Learning to recognize personality, thus providing a broader context of fundamental principles of constructing, validating, and then providing recommendations on how to use Machine Learning to advance the level of our understanding and applying our learnings to develop advanced personality recognition applications. araphrased Text Output text rewrite / rewrite We use deep neural network learning to recognize characteristics independently and, through feature-level fusion of these networks, we obtain final predictions of obvious personalities. We use a previously trained long-term and short-term memory network to integrate time information. We train large-scale models comprised of specific subnetworks- modalities through a two-stage training process. We first train the subnets separately for and then use these trained networks to fit the overall model. We used the ChaLearn First Impressions V2 challenge dataset to evaluate the proposed method. Our method achieves the most effective overall "medium precision" score, with an average score of for 5 personality characteristics, which is compared to the state-of-the-art method.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here