
Peak to Average Power Ratio Reduction Techniques
Author(s) -
M. Arjun Reddy
Publication year - 2021
Publication title -
international journal for research in applied science and engineering technology
Language(s) - English
Resource type - Journals
ISSN - 2321-9653
DOI - 10.22214/ijraset.2021.35254
Subject(s) - clipping (morphology) , computer science , orthogonal frequency division multiplexing , mimo , signal to noise ratio (imaging) , electronic engineering , distortion (music) , bandwidth (computing) , reduction (mathematics) , algorithm , channel (broadcasting) , telecommunications , mathematics , amplifier , engineering , geometry , philosophy , linguistics
Multiple-input to multiple-output (MIMO) and orthogonal frequency division multiplexing (OFDM) are the utmost widely used wireless communication system because of its large benefits and advantageous. Though MIMO OFDM systems have high advantages there is a major drawback that makes the system noisy and the inefficient use of bandwidth. This drawback mainly occurred due to the spikes in the transmitting signal. These spikes make the value of peak to average power ratio of the signal high and results in distortion and noise in the signal. To avoid these spikes there are number of techniques introduced. We will discuss about the three methods namely partial transmit sequence, clipping and filtering method, Selective Mapping technique. All these methods are used to decrease the high peak to the average ratio by removing the spikes in the signal. And we will see the outputs obtained by using MATLAB software. Clipping and filtering technique would be the simplest technique to lower the peak to average power ratio while partial transmit technique is the most efficient method to diminish the peak to the average power ratio.