
Prediction of Spam Email using Machine Learning Classification Algorithm
Author(s) -
P. Sai Ravi Teja
Publication year - 2021
Publication title -
international journal for research in applied science and engineering technology
Language(s) - English
Resource type - Journals
ISSN - 2321-9653
DOI - 10.22214/ijraset.2021.35226
Subject(s) - computer science , machine learning , naive bayes classifier , artificial intelligence , adaboost , support vector machine , boosting (machine learning) , decision tree , random forest , perceptron , multilayer perceptron , statistical classification , convolutional neural network , artificial neural network , data mining
Unsolicited e-mail also known as Spam has become a huge concern for each e-mail user. In recent times, it is very difficult to filter spam emails as these emails are produced or created or written in a very special manner so that anti-spam filters cannot detect such emails. This paper compares and reviews performance metrics of certain categories of supervised machine learning techniques such as SVM (Support Vector Machine), Random Forest, Decision Tree, CNN, (Convolutional Neural Network), KNN(K Nearest Neighbor), MLP(Multi-Layer Perceptron), Adaboost (Adaptive Boosting) Naïve Bayes algorithm to predict or classify into spam emails. The objective of this study is to consider the details or content of the emails, learn a finite dataset available and to develop a classification model that will be able to predict or classify whether an e-mail is spam or not.