z-logo
open-access-imgOpen Access
Developing and Studying a Model of Thermal Field within the Pyrolysis Regenerator Reaction Chamber
Author(s) -
В. А. Глушков,
Vladimir Gennadievich Gravshin
Publication year - 2019
Publication title -
vestnik iževskogo gosudarstvennogo tehničeskogo universiteta/vestnik ižgtu imeni m.t. kalašnikova
Language(s) - Russian
Resource type - Journals
eISSN - 2413-1172
pISSN - 1813-7903
DOI - 10.22213/2413-1172-2018-4-208-216
Subject(s) - regenerative heat exchanger , pyrolysis , field (mathematics) , thermal , nuclear engineering , process engineering , materials science , computer science , environmental science , waste management , mechanical engineering , engineering , thermodynamics , physics , mathematics , heat exchanger , pure mathematics
Рассматривается подход к моделированию динамики распространения тепла по объему гомогенного материала внутри реакционной камеры пиролизного регенератора при наличии нагревателей, размещаемых внутри камеры. Проанализированы несколько подходов для расчета температурных полей: аналитический (непосредственное решение дифференциального уравнения Фурье в частных производных), численный (метод конечных разностей и метод конечных элементов), применение эквивалентных электрических схем и компьютерное моделирование. Показано, что данная динамика описывается дифференциальными уравнениями дробного порядка. При этом форма уравнений, описывающих зависимости токов в ветвях электрической цепи и напряжения в ее узлах, аналогична форме уравнений, описывающих зависимость теплового потока в среде и значений температуры в отдельных ее точках. Таким образом, решение дифференциального уравнения заменяется на моделирование работы электрической цепи во временнóй области. Предложены схемотехнические модели теплопроводности среды для таких элементов пространства, как стержень, а на его основе - элемент плоскости, столбец и объем. С помощью данных элементов проведено моделирование нестационарного распространения температуры по объему среды при наличии от одного до трех нагревательных элементов внутри объема. Корректность схемотехнического моделирования подтверждена с помощью специализированного ПО, реализующего классический метод конечных элементов.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here