z-logo
open-access-imgOpen Access
Bio-plastic Films Production from Feather Waste Degradation by Keratinolytic Bacteria Bacillus cereus
Author(s) -
Wafa A. Alshehri,
Ashjan F. Khalel,
Khaled Elbanna,
Iqbal Ahmad,
Hussein H. Abulreesh
Publication year - 2021
Publication title -
journal of pure and applied microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.149
H-Index - 16
eISSN - 2581-690X
pISSN - 0973-7510
DOI - 10.22207/jpam.15.2.17
Subject(s) - bioplastic , keratinase , bacillus cereus , food science , feather , biodegradation , bacteria , industrial microbiology , glycerol , cereus , biology , chemistry , microbiology and biotechnology , biochemistry , fermentation , organic chemistry , ecology , genetics
Plastic materials have become a necessity of human life especially in the packaging of food commodities and biomedical procedures. Bioplastic is emerging as an effective alternative to fossil oil-based materials to avoid the environmental hazards of the plastic industry. During this study, chicken feathers were used as a substrate to isolate keratin degrading bacteria. Among 14 identified isolates, Bacillus sp BAM3 was found to be the most promising isolate. Partial 16S rDNA analysis-based molecular characterization revealed it is a strain of Bacillus cereus. Bacillus sp BAM3 can grow and produce keratinase in feathers containing basal medium as the sole carbon and energy source. The maximum keratinase production (730U/ml) was achieved within 24 h under optimum reaction conditions. The optimized reaction pH and temperature were noted as 9.0 and 50 °C for crude keratinase activity, respectively. The chicken feathers were used as a substrate in 2, 5, and 10 wt% glycerol to synthesize keratin-based bioplastic with keratinolytic bacterium Bacillus cereus BAM3. Bioplastic prepared from keratin with 2% of glycerol was found to possess good mechanical properties. Therefore, the results present a novel keratinolytic isolate of Bacillus cereus BAM3, which may have potential biotechnological applications in keratin hydrolysis processes. The development of keratin-based bioplastics possessing superior crystalline morphology requires further investigations to substitute fossil oil-based materials.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom