
Spectral analysis of Hahn-Dirac system
Author(s) -
Bilender P. Allahverdiev,
Hüseyin Tuna
Publication year - 2021
Publication title -
proyecciones
Language(s) - English
Resource type - Journals
eISSN - 0717-6279
pISSN - 0716-0917
DOI - 10.22199/issn.0717-6279-4842
Subject(s) - eigenfunction , orthonormal basis , eigenvalues and eigenvectors , orthogonality , mathematics , dirac (video compression format) , sequence (biology) , countable set , mathematical analysis , boundary value problem , function (biology) , pure mathematics , dirac comb , mathematical physics , dirac algebra , dirac equation , physics , quantum mechanics , geometry , dirac spinor , evolutionary biology , biology , neutrino , genetics
In this paper, we study some spectral properties of the one-dimensional Hahn-Dirac boundary-value problem, such as formally self-adjointness, the case that the eigenvalues are real, orthogonality of eigenfunctions, Green’s function, the existence of a countable sequence of eigenvalues, eigenfunctions forming an orthonormal basis of L2ω,q((ω0, a); E).