z-logo
open-access-imgOpen Access
Local vertex antimagic chromatic number of some wheel related graphs
Author(s) -
Ravi Shankar,
M. Nalliah
Publication year - 2022
Publication title -
proyecciones
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.226
H-Index - 12
eISSN - 0717-6279
pISSN - 0716-0917
DOI - 10.22199/issn.0717-6279-4420
Subject(s) - combinatorics , mathematics , bijection , chromatic scale , vertex (graph theory) , graph , discrete mathematics
Let G = (V,E) be a graph of order p and size q having no isolated vertices. A bijection ƒ : E → {1, 2, 3, ..., q} is called a local antimagic labeling if for all uv ∈ E we have w(u) ≠ w(v), the weight w(u) = ∑e∈E(u) f(e) where E(u) is the set of edges incident to u. A graph G is local antimagic if G has a local antimagic labeling. The local antimagic chromatic number χla(G) is defined to be the minimum number of colors taken over all colorings of G induced by local antimagic labelings of G. In this paper, we determine the local antimagic chromatic number for some wheel related graphs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here