
Local vertex antimagic chromatic number of some wheel related graphs
Author(s) -
Ravi Shankar,
M. Nalliah
Publication year - 2022
Publication title -
proyecciones
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.226
H-Index - 12
eISSN - 0717-6279
pISSN - 0716-0917
DOI - 10.22199/issn.0717-6279-4420
Subject(s) - combinatorics , mathematics , bijection , chromatic scale , vertex (graph theory) , graph , discrete mathematics
Let G = (V,E) be a graph of order p and size q having no isolated vertices. A bijection ƒ : E → {1, 2, 3, ..., q} is called a local antimagic labeling if for all uv ∈ E we have w(u) ≠ w(v), the weight w(u) = ∑e∈E(u) f(e) where E(u) is the set of edges incident to u. A graph G is local antimagic if G has a local antimagic labeling. The local antimagic chromatic number χla(G) is defined to be the minimum number of colors taken over all colorings of G induced by local antimagic labelings of G. In this paper, we determine the local antimagic chromatic number for some wheel related graphs.