z-logo
open-access-imgOpen Access
Toward Suicidal Ideation Detection with Lexical Network Features and Machine Learning
Author(s) -
Ulya Bayram,
William Lee,
D. Santel,
Ali A. Minai,
Peggy Clark,
Tracy A. Glauser,
Teresa Pestian
Publication year - 2022
Publication title -
northeast journal of complex systems
Language(s) - English
Resource type - Journals
ISSN - 2577-8439
DOI - 10.22191/nejcs/vol4/iss1/2
Subject(s) - suicidal ideation , artificial intelligence , classifier (uml) , computer science , machine learning , ideation , feature extraction , artificial neural network , logistic regression , deep learning , psychology , poison control , suicide prevention , medicine , medical emergency , cognitive science
In this study, we introduce a new network feature for detecting suicidal ideation from clinical texts and conduct various additional experiments to enrich the state of knowledge. We evaluate statistical features with and without stopwords, use lexical networks for feature extraction and classification, and compare the results with standard machine learning methods using a logistic classifier, a neural network, and a deep learning method. We utilize three text collections. The first two contain transcriptions of interviews conducted by experts with suicidal (n=161 patients that experienced severe ideation) and control subjects (n=153). The third collection consists of interviews conducted by experts with epilepsy patients, with a few of them admitting to experiencing suicidal ideation in the past (32 suicidal and 77 control). The selected methods detect suicidal ideation with an average area under the curve (AUC) score of 95% on the merged collection with high suicidal ideation, and the trained models generalize over the third collection with an average AUC score of 69%. Results reveal that lexical networks are promising for classification and feature extraction as successful as the deep learning model. We also observe that a logistic classifier’s performance was comparable with the deep learning method while promising explainability.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here