
NUMERICAL SIMULATION OF SINGLE POINT INCREMENTAL FORMING FOR ASYMMETRIC PARTS
Author(s) -
George–Christopher Vosniakos,
Gabriel Pipinis,
P.K. Kostazos
Publication year - 2021
Publication title -
facta universitatis. series: mechanical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.483
H-Index - 16
eISSN - 2335-0164
pISSN - 0354-2025
DOI - 10.22190/fume201210046v
Subject(s) - sheet metal , mechanical engineering , point (geometry) , single point , process (computing) , computer science , finite element method , scanner , forming processes , engineering drawing , materials science , geometry , computer simulation , structural engineering , engineering , mathematics , simulation , artificial intelligence , operating system
Single point incremental forming (SPIF) that will produce non-symmetric sheet metal parts has been rarely dealt with so far. SPIF of a Francis hydro-turbine vane made of aluminum alloy is studied as a typical example in this work. At first, a concave geometry, encompassing the desired vane shape is designed, from which the formed part will be ultimately cut out. The necessary SPIF toolpaths are created by using the CAM software normally used for milling processes. Based on these toolpaths, a finite element simulation is setup using shell elements with a particular emphasis on substantial time scaling and due care on tool-sheet contact parameters. For validation purposes the part was manufactured and digitized by a white light scanner. It exhibited tolerable deviation from the targeted nominal geometry. Simulation predicted a significant part of this deviation, proving its indispensability in checking out toolpaths and process parameters for non-symmetric parts, yet at non-negligible computational time.