
Endocannabinoid turnover in GtoPdb v.2021.3
Author(s) -
Stephen P.H. Alexander,
Patrick Doherty,
Christopher J. Fowler,
Jürg Gertsch,
Mario van der Stelt
Publication year - 2021
Publication title -
iuphar/bps guide to pharmacology cite
Language(s) - English
Resource type - Journals
ISSN - 2633-1020
DOI - 10.2218/gtopdb/f943/2021.3
Subject(s) - anandamide , endocannabinoid system , diacylglycerol lipase , 2 arachidonoylglycerol , chemistry , biochemistry , monoacylglycerol lipase , enzyme , phospholipase a2 , cannabinoid receptor , receptor , agonist
The principle endocannabinoids are 2-acylglycerol esters, such as 2-arachidonoylglycerol (2-AG), and N-acylethanolamines, such as anandamide (N-arachidonoylethanolamine, AEA). The glycerol esters and ethanolamides are synthesised and hydrolysed by parallel, independent pathways. Mechanisms for release and re-uptake of endocannabinoids are unclear, although potent and selective inhibitors of facilitated diffusion of endocannabinoids across cell membranes have been developed [28]. FABP5 (Q01469) has been suggested to act as a canonical intracellular endocannabinoid transporter in vivo [17]. For the generation of 2-arachidonoylglycerol, the key enzyme involved is diacylglycerol lipase (DAGL), whilst several routes for anandamide synthesis have been described, the best characterized of which involves N-acylphosphatidylethanolamine-phospholipase D (NAPE-PLD, [70]). A transacylation enzyme which forms N-acylphosphatidylethanolamines has been identified as a cytosolic enzyme, PLA2G4E (Q3MJ16) [62]. In vitro experiments indicate that the endocannabinoids are also substrates for oxidative metabolism via cyclooxygenase, lipoxygenase and cytochrome P450 enzyme activities [5, 23, 72].