z-logo
open-access-imgOpen Access
Bots no Twitter: Análise Avaliativa de tweets não autênticos
Author(s) -
Luana Santos Gonçalves,
Renan De Siqueira Cecchin
Publication year - 2022
Publication title -
entrepalavras
Language(s) - Portuguese
Resource type - Journals
ISSN - 2237-6321
DOI - 10.22168/2237-6321-32285
Subject(s) - humanities , political science , philosophy
Dentre as estratégias de manipulação de informações, contas inautênticas em redes sociais têm ganhado força, sobretudo quando relacionadas a temas sobre política. A rede social que mais facilita essa ação é o Twitter, com seu sistema de bots e hashtags. Tendo isso em vista, neste artigo pretendemos localizar, analisar e categorizar ocorrências de avaliações em contas inautênticas que suscitam a disseminação de crenças e opiniões acerca do cenário político atual brasileiro. Por meio do site Bot Sentinel, que utiliza machine learning com base em um modelo matemático (ZHANG, 2020) para prever a autenticidade de um usuário e expor contas inautênticas e suas conexões com os temas mais comentados, coletamos as hashtags mais utilizadas entre maio e outubro de 2020. A partir disso, selecionamos 10 tweets de contas inautênticas contendo a hashtag mais popular em seu referido período para cada mês da coleta. O aparato teórico em que nos baseamos é o sistema de avaliatividade, mais precisamente o subsistema de atitude (MARTIN; WHITE, 2005), para verificarmos como tais avaliações operam para construir relações de alinhamento e relacionamento entre os escritores e seus leitores. Os resultados indicam o uso de padrões avaliativos de capacidade positiva para o Presidente da República e de propriedade negativa para denegrir a imagem de seus opositores, acentuando a ideia de Nós vs. Eles (BORGES; VIDIGAL, 2018).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here