
EFFECT OF LOVASTATIN NANO DRUG DELIVERY SYSTEM ON BONE MINERAL DENSITY (BMD) AND BIOMECHANICAL PROPERTIES OF TIBIA BONES OF WISTAR RATS
Author(s) -
Ramandeep Kaur,
M. Ajitha
Publication year - 2019
Publication title -
international journal of pharmacy and pharmaceutical sciences/international journal of pharmacy and pharmaceutical sciences
Language(s) - English
Resource type - Journals
eISSN - 2656-0097
pISSN - 0975-1491
DOI - 10.22159/ijpps.2019v11i9.34624
Subject(s) - endocrinology , alkaline phosphatase , medicine , tibia , transdermal , bone mineral , osteoporosis , bone resorption , chemistry , alendronic acid , saline , lovastatin , resorption , dexamethasone , pharmacology , anatomy , biochemistry , enzyme , cholesterol
Objective: In the present study, transdermal nanoemulsion (NE) gel of lovastatin was investigated for its anti-osteoporosis effect on the long bones of rat i.e. tibia.
Methods: Male wistar rats (n=30, weighing 180-200g) were taken for this study and grouped as: 1) control (normal saline daily), 2) Dex (dexamethasone sodium; 25 mg/kg subcutaneously twice a week), 3) Dex+LNG5 (lovastatin nanoemulsion gel; 5 mg/kg/d transdermally daily), 4) Dex+LNG10 (lovastatin nanoemulsion gel; 10 mg/kg/d transdermally daily), and 5) Dex+ALN (alendronate sodium; 0.03 mg/kg/d orally daily). All the treatments were carried out for 60 d. At the end of the experiment, all animals were anesthetized using diethyl ether and collected blood samples from retro-orbital venous plexus of rats in dry eppendorf tubes followed by the sacrifice of animals by cervical dislocation method and collected tibia bones of both the legs for analysis.
Results: Bone formation biomarkers (OC: osteocalcin, b-ALP: bone-specific alkaline phosphatase, PINP: N-terminal propeptides of type I procollagen) were significantly improved and resorption biomarkers (CTx: C-terminal cross-linking telopeptides of type-I collagen, TRAcP5b: isoform 5b of tartarate resistant acid phosphatase) were significantly reduced in the LNG5 (p<0.05) and LNG10 (p<0.05) treatment groups when compared to Dex. In vivo anti-osteoporotic results demonstrated the formation of new bone in osteoporotic rat tibias. Biomechanical strength testing demonstrated increased load-bearing capacity of rat tibias in the treated animals in comparison with the osteoporotic group (p<0.05 for LNG5 and p<0.01 for LNG10).
Conclusion: Thus, the transdermal NE gel formulation of lovastatin demonstrated the greater potential for the treatment of osteoporosis.