
ENHANCING DISSOLUTION RATE OF INDOMETHACIN BY IN SITU CRYSTALIZATION; DEVELOPMENT OF ORALLY DISINTEGRATING TABLETS
Author(s) -
Nadia H. Naiem,
Ebtessam A. Essa,
Gamal M. El Maghraby
Publication year - 2018
Publication title -
international journal of pharmacy and pharmaceutical sciences/international journal of pharmacy and pharmaceutical sciences
Language(s) - English
Resource type - Journals
eISSN - 2656-0097
pISSN - 0975-1491
DOI - 10.22159/ijpps.2018v10i5.24311
Subject(s) - dissolution , polyvinylpyrrolidone , polyethylene glycol , crystallization , chemistry , pulmonary surfactant , polymer , solubility , dissolution testing , nuclear chemistry , chromatography , chemical engineering , biopharmaceutics classification system , organic chemistry , biochemistry , engineering
Objective: The main objective of this study was to investigate the potential of in situ crystallization of indomethacin, in presence or absence of hydrophilic materials, to improve drug dissolution with the goal of developing fast disintegrating tablets.Methods: Indomethacin crystals were prepared by bottom up approach. Water containing hydrophilic additive (polymer or/and surfactant) was added to ethanolic solution of indomethacin while stirring. The selected polymers were hydroxylpropylmethyl cellulose E5 (HPMC E5), polyethylene glycol 6000 (PEG6000) and polyvinylpyrrolidone K40 (PVP K40). The surfactants used were Tween80 and Glucire 44/14. The precipitated particles were collected and air dried. Solid state characterization were performed in addition to in vitro release studies in both acidic (0.1 N HCL) and alkaline medium (phosphate buffer pH 6.8). Optimized formulation was selected to develop fast disintegrating tablets.Results: Thermal behavior suggested modulation in crystalline nature with reduction in particle size that was confirmed by X-ray diffraction results. Infrared spectroscopy excluded any interaction between drug and hydrophilic excipients. Drug dissolution in acid media showed slight improve in drug release, while marked increase was observed in the alkaline media. Combination between Tween80 and HPMC (F7) showed the best dissolution parameters with 5-folds enhancement in release efficiency (RE) compared to pure drug. Formula F7 was successively used to formulate fast disintegrating tablets with prompted release of 58% of the loaded dose and RE of 83%.Conclusion: In situ crystallization of indomethacin is a good approach for enhanced dissolution rate with the presence of hydrophilic additives during precipitation process improving the efficiency.