z-logo
open-access-imgOpen Access
MODELING OF CARBONIC ANHYDRASE (II) INHIBITORY ACTIVITIES OF SULPHONILAMIDE SCHIFF BASES BY ARTIFICIAL NEURAL NETWORK TRAINED WITH DIFFERENT NUMERICAL TECHNIQUES
Author(s) -
Vandana Pandey
Publication year - 2018
Publication title -
international journal of pharmacy and pharmaceutical sciences/international journal of pharmacy and pharmaceutical sciences
Language(s) - English
Resource type - Journals
eISSN - 2656-0097
pISSN - 0975-1491
DOI - 10.22159/ijpps.2018v10i1.22775
Subject(s) - applicability domain , quantitative structure–activity relationship , artificial neural network , linear regression , molecular descriptor , mathematics , linear model , test set , artificial intelligence , algorithm , computer science , pattern recognition (psychology) , machine learning , statistics
Objective: The aim of the present study was to develop robust linear and non-linear Quantitative Structure-Activity Relationship (QSAR) models for exploring the relationship between the structural features of a series of sulphanilamide Schiff bases and their CA (II) inhibition activities.Methods: QSAR modeling of carbonic anhydrase (II) inhibiting activities of a series of sulphanilamide Schiff bases as a function of theoretically derived molecular descriptors calculated by Dragon software was established linearly by stepwise multiple linear regression (SW-MLR) method and non-linearly by artificial neural network (ANN) method, trained with different numerical techniques namely, Scaled conjugate gradient (SCG), quasi-Newton (BFGS), and Levenberg-Marquardt (LM) algorithm. SW-MLR method was also used to select descriptors from large descriptor pool. After the selection of variables, best selected linear model was validated by Y-randomization test. The applicability domain was assessed by the normalized mean Euclidean distance value for each compound. The prediction quality of proposed non-linear QSAR models was tested externally using validation and test set.Results: The low value of R2average = 0.214 from the Y-randomization test and no significant correlation between the selected descriptors indicates that linear model is reliable, and robust. Applicability domain analysis has also revealed that the suggested model has acceptable predictability. To explore non-linear relationship between selected descriptors and the target property, ANN approach trained with three supervised algorithms (BFGS, SCG and LM) was used. Statistical comparison of the quality of models obtained using ANN method trained with above mentioned three algorithms with SW-MLR model shows that ANN with 4-3-1 architecture and trained with LM algorithm has better predictive power as indicated by low RMSEval (0.11), MAPEval (11.95) values and high R2val (0.96) value.Conclusion: The results of this work indicated the ANN trained with fastest Levenberg-Marqardt algorithm is a promising tool for establishing non-linear relationship between selected sulphanilamide Schiffbases and their CA (II) inhibition values.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here