
ANTIMICROBIAL ACTIVITY OF CALLYSPONGIA DIFFUSA (MARINE SPONGE) ASSOCIATED ENDOPHYTIC BACTERIA L STRAINS
Author(s) -
Vijayanand Warad,
Prasanna V Habbu,
Rajesh Shastri
Publication year - 2017
Publication title -
international journal of pharmacy and pharmaceutical sciences/international journal of pharmacy and pharmaceutical sciences
Language(s) - English
Resource type - Journals
eISSN - 2656-0097
pISSN - 0975-1491
DOI - 10.22159/ijpps.2017v9i7.18480
Subject(s) - antimicrobial , microbiology and biotechnology , biology , pseudomonas aeruginosa , aspergillus fumigatus , candida albicans , enterococcus faecium , sponge , minimum inhibitory concentration , pathogenic bacteria , staphylococcus aureus , bacteria , antibacterial activity , antibiotics , botany , genetics
Objective: To screen the antimicrobial activity Of Callyspongia Diffusa (Marine Sponge) Associated Endophytic Bacterial Strains.Methods: We have isolated endophytic bacterias CDB-1 and CDB-2 from marine sponge Callyspongia diffusa and identified as Pseudomonas taiwanensis strain and Lysinibacillussphaericus strain respectively by the phylogenetic analysis. Fractions of CDB-1 and CDB-2 were screened for in vitro and in vivo antimicrobial activities against pathogenic bacteria and mycobacterium tuberculosis H37 RV strain by Minimum Inhibitory Concentration (MIC) method.Results: The lowest MIC against Kleibesella pnumoniae, Escherichia coli and Enterococcus feacalis was found to be 0.2 µg/ml and 0.4 µg/ml respectively for CDB-2. A significant antifungal activity was observed against Candida albicans (0.2-0.8 µg/ml) and Aspergillus niger (0.2-0.4 µg/ml). Further, Chloroform fraction of CDB-1 and ethyl acetate fraction of CDB-2 have shown significant anti-tubercular activity against the tested organism with MIC of 6.25µg/ml. This was supported by in vivo antimicrobial activity against K. Pneumonia infection in mice and least haemolytic activity against erythrocytes was observed. Compared to chloramphenicol.Conclusion: In this study, we have reported the marine natural species offer a rich source of bioactive metabolites that can exploit to develop novel, useful and potential therapeutic agents.