z-logo
open-access-imgOpen Access
ASSESSMENT OF AIR POLLUTION TOLERANCE INDEX OF PLANTS: A COMPARATIVE STUDY
Author(s) -
Aasawari A. Tak,
Umesh B. Kakde
Publication year - 2017
Publication title -
international journal of pharmacy and pharmaceutical sciences/international journal of pharmacy and pharmaceutical sciences
Language(s) - English
Resource type - Journals
eISSN - 2656-0097
pISSN - 0975-1491
DOI - 10.22159/ijpps.2017v9i7.18447
Subject(s) - tectona , azadirachta , dalbergia sissoo , mangifera , cassia , horticulture , swietenia macrophylla , acacia auriculiformis , pollution , biology , toxicology , acacia , botany , ecology , medicine , alternative medicine , pathology , traditional chinese medicine
Objective: Air pollution is one of the major global tribulations in many developing cities around the world. Addressing this sort of pollution is more intricate than other ecological challenges. As pollution is an upcoming issue, we aimed at assessing the air pollution tolerant plants from roadside exposed to vehicular air pollution from two different locations in Thane city.Methods: In the present study, commonly available ten roadside tree species selected from polluted and control area, and their air pollution tolerance index (APTI) determined in Thane city. The biochemical parameters viz. pH, ascorbic acid, total chlorophyll, relative water content (RWC) were considered to calculate APTI by using standard method.Results: The study shows that the control site has more APTI than the polluted site. The APTI observed minimum in Tectona grandis 5.2±0.3247 and maximum in Azadirachta indica 13.5±0.4404. Reduction in APTI at polluted site shows that Alstonia scholaris (6.6%), Tamarindus indica (8.8%) and Azadirachta indica (10.3%) were the most tolerant tree species, while Tectona grandis (47.5%), Acacia nilotica (27.4%) and Cassia fistula (20.7%) were more sensitive tree species. The results showed the order of tolerance (% difference in APTI) as Alstonia scholaris (6.6%)>Tamarindus indica (8.8%)>Azadirachta indica (10.3%)>Moringa pterygosperma (11.9%)>Mangifera indica (13.9%)>Bahunia variegate (14.3%)>Annona squamosa (18.7%)>Cassia fistula (20.7%)>Acacia nilotica (27.4%)>Tectona grandis (47.5%).Conclusion: Tolerant trees species can serve as a sink, and sensitive tree species can act as an indicator for air pollution mitigation. Thus, this study provides useful insights for selecting tolerant species for future planning and Greenbelt development in urban areas.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here