
EVALUATING THE PROTECTIVE EFFICACY OF COMBINATION AND WITHANIA SOMNIFERA AND VITAMIN E AGAINST CADMIUM INDUCED OXIDATIVE STRESS MEDIATED HEPATIC HISTOPATHOLOGY AND GENOTOXICITY IN MURINE MODEL
Author(s) -
Seema Rani,
Vishal Sharma,
Mani Chopra
Publication year - 2017
Publication title -
international journal of pharmacy and pharmaceutical sciences/international journal of pharmacy and pharmaceutical sciences
Language(s) - English
Resource type - Journals
eISSN - 2656-0097
pISSN - 0975-1491
DOI - 10.22159/ijpps.2017v9i10.20009
Subject(s) - oxidative stress , superoxide dismutase , glutathione , antioxidant , genotoxicity , lipid peroxidation , pharmacology , chemistry , withania somnifera , toxicity , catalase , vitamin e , biochemistry , biology , medicine , pathology , enzyme , alternative medicine , organic chemistry
Objective: Cadmium (Cd) exposure develops various serious pathological conditions because of its long-term retention in tissues. Withania somnifera (WS) is a known antioxidant due to its pharmacological properties, whereas vitamin E (VE) is a dietary antioxidant. The present study tries to study the combinational effect of WS and VE against Cd-induced toxicity.Methods: Amelioration of Cd-induced toxicity by WS and VE was evaluated in mice liver by studying biochemical, morphological and genotoxic parameters. For this study mice (n=6) were given short-term Cd exposure of 5 mg/kg b. wt. intraperitoneally (ip) for 5 d. WS leaf extract was given orally (500 mg/kg b. wt.) and in combination with VE (100 mg/kg b. wt.) to study its preventive effects against Cd-induced oxidative stress-mediated histopathological and genotoxic alterations.Results: Cd significantly enhanced lipid peroxidation (LPO (p<0.0001) and declined the levels of antioxidant viz. reduced glutathione (GSH (p ≤ 0.0001), glutathione-S-Transferase (GST (p ≤ 0.0001), superoxide dismutase (SOD (p ≤ 0.0001) and catalase (CAT) (p ≤ 0.0001) activity. Histopathological examination of Cd-treated mice liver exhibited marked structural damage. Metal generated oxidative stress and imbalance of pro-and antioxidants forms the basis for marked structural changes and genotoxicity. Individual treatments of WS and VE reduced the Cd-induced toxicity but when WS was given in combination with VE for the same period, levels of antioxidants were brought to near normal levels.Conclusion: WS in combination with VE reduced Cd-induced oxidative burden and restored the levels of anti-oxidant enzymes resulting into improved histoarchitecture and reduced genotoxic insult.