
OPTIMIZATION AND CHARACTERIZATION OF PEG-PCL-PEG TRIBLOCK COPOLYMER AS CARRIER OF DRUG USING FULL FACTORIAL DESIGN
Author(s) -
Zynopsicha Armatazaka,
Teuku Nanda Saifullah Sulaiman,
Abdul Karim Zulkarnain
Publication year - 2019
Publication title -
international journal of current pharmaceutical research
Language(s) - English
Resource type - Journals
ISSN - 0975-7066
DOI - 10.22159/ijcpr.2019v11i5.35706
Subject(s) - copolymer , solubility , ethylene glycol , polymer chemistry , materials science , peg ratio , factorial experiment , micelle , particle size , chemistry , aqueous solution , polymer , organic chemistry , composite material , finance , economics , statistics , mathematics
Objective: Triblock copolymer of poly(ethylene glycol)-poly(ɛ-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) was applicated as hydrophobic drug. This study aims to optimization and characterization of PECE triblock copolymer as carriers of hydrophobic drug (ketoprofen).
Methods: Triblock copolymer of PECE was prepared with varying composition ratio of PEG and PCL by ring-opening and coupling reaction. The characteristics of triblock copolymer were characterized using FTIR and DSC. Variation composition ratio of poly(ɛ-caprolactone) (PCL)/poly(ethylene glycol) (PEG) and ratio PECE/drug as factors for optimization using full factorial design. Ketoprofen was loaded into PECE triblock copolymer micelles by emulsification and solvent evaporation method. Responses were measured particle size, entrapment efficiency (EE) and drug solubility.
Results: The result of this study showed that a higher ratio of PCL/PEG and ratio of PECE/drug, reducing particle size, increasing EE and improving drug solubility. The optimum formula obtained by ratio of PCL/PEG is 2:1 and ratio of PECE/drug is 40:1 with particle size is 356,967±9,142 nm, EE is 57,751±0,437%, drug solubility is 32,648±0,200 µg/ml and zeta potential-18,867±2,578 mV. A full factorial design was applied to determine the optimum formula for the PECE triblock copolymer as drug carriers.
Conclusion: The PECE triblock copolymer was preparated using ring-opening polymerization method with Sn(Oct)2 as a catalyst and then continued the reaction with HMDI as coupling agent. Ketoprofen was loaded into PECE triblock copolymer using methods emulsification and solvent evaporation.