z-logo
open-access-imgOpen Access
THERAPEUTIC PROFILING OF NANO ENCAPSULATED DIOSGENIN VIA ATTENUATING HORMONAL STATUS, CELL PROLIFERATION, INFLAMMATORY RESPONSES, AND APOPTOSIS IN AN ANIMAL MODEL OF MAMMARY ONCOGENESIS
Author(s) -
Manobharathi Vengaimaran,
Kalaiyarasi Dhamodharan,
Sankaran Mirunalini
Publication year - 2021
Publication title -
international journal of applied pharmaceutics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.238
H-Index - 15
ISSN - 0975-7058
DOI - 10.22159/ijap.2021v13i6.42777
Subject(s) - dmba , apoptosis , cyclin d1 , mammary tumor , proliferating cell nuclear antigen , carcinogenesis , cancer research , inflammation , hormone , cell growth , pharmacology , chemistry , 7,12 dimethylbenz[a]anthracene , diosgenin , cell cycle , medicine , endocrinology , immunohistochemistry , breast cancer , cancer , biochemistry , organic chemistry
Objective: The central motive of this study is to explore the therapeutic impact of Diosgenin encapsulated Chitosan nanoparticles (DG@CS-NP) on mammary carcinogenesis in female Sprague Dawley rats via modulating hormonal status, cell proliferation, inflammatory responses, and Apoptosis.Methods: 7,12-dimethylbenz(a)anthracene (DMBA) was administered subcutaneously near the mammary gland (25 mg/kg b. wt) to provoke mammary tumor in female Sprague Dawley rats. Following the progress of a tumor, DMBA-induced tumor-bearing rats were medicated orally with 5 mg/kg b. wt of DG@CS-NP. Consequently, the expression of ER, PR, PCNA, Cyclin D1, NF-κB, TNF-α, Bcl-2, Caspases-3, and p53 in experimental rats were revealed via architectural immunohistochemistry. Further, Diosgenin interactions with these proteins were evidently confirmed by molecular docking analysis.Results: As a result, we noticed diminished levels of ER, PR, PCNA, Cyclin D1, NF-κB, TNF-α, and Bcl-2 expressions in DG@CS-NP medicated rats as well as with elevated levels of Caspases-3 and p53 expressions. In DMBA rats, the expressions were vice versa. Additionally, molecular docking analyses support these outcomes by highlighting the strong interaction between Diosgenin and breast cancer targets.Conclusion: These reports prove that DG@CS-NP imposes its therapeutic impact by hormonal adjustments, downregulating proteins involved in inflammation and cellular proliferation, and thereby promotes apoptosis by impeding apoptotic inhibitors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here