
USE OF SIMPLEX LATTICE DESIGN IN DEVELOPMENT OF ORAL SELF-NANOEMULSIFYING DRUG DELIVERY SYSTEM CONTAINING ROSUVASTATIN CALCIUM
Author(s) -
Nishant Oza,
Swati Sagar,
Akruti Khodakiya
Publication year - 2020
Publication title -
international journal of applied pharmaceutics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.238
H-Index - 15
ISSN - 0975-7058
DOI - 10.22159/ijap.2020v12i3.34358
Subject(s) - solubility , pulmonary surfactant , bioavailability , chemistry , chromatography , drug delivery , dispersity , zeta potential , rosuvastatin calcium , materials science , organic chemistry , rosuvastatin , pharmacology , nanoparticle , nanotechnology , medicine , biochemistry
Objective: The aim of the present work was to enhance the solubility of rosuvastatin calcium by self-nano emulsifying drug delivery system (SNEDDS) using mixtures of oil, cosolvent, surfactant and cosurfactant.
Methods: Based on solubility study and emulsification efficiency, Preliminary investigations of various oils, surfactants and cosurfactants were carried out for the selection of the proper SNEDDS ingredients. Pseudo-ternary phase diagrams were constructed to identify the efficient self-emulsification region. A series of SNEDDS formulations were prepared using labrasol: cremophor EL with a combination of peceol: ethyl oleate by using the simplex lattice design. Prepared formulation evaluated for refractive index, turbidimetric, droplet size, zeta potential and polydispersity index, self-emulsification, stability tests, viscosity and in vitro diffusion studies.
Results: The best formula for SNEDDS in the current study were: 15% oil (peceol: ethyloleatein 1:1 ratio), 50% Labrasol and 35% Cremophor EL. All the SNEDDS batches globule size was found to be varied from 22.90±1.50 nm to 43.90±1.40 nm. and no significant variations in globule size were observed after 3 mo stability studies. All the batches % transparency was found to be varied from 95.40±1.40% to 99.50±1.10% and drug diffused in 10 min varied from 63.65±1.51% to 93.72±1.46 %.
Conclusion: The data suggest the use of rosuvastatin calcium SNEDDS to offer the potential for delivery and it increases the aqueous solubility and bioavailability of the drug.