
PREPARATION AND EVALUATION OF ATENOLOL-β-CYCLODEXTRIN ORALLY DISINTEGRATING TABLETS USING CO-PROCESS CROSPOVIDONE-SODIUM STARCH GLYCOLATE
Author(s) -
Nani Parfati,
Karina Citra Rani,
Nathanael Charles,
Valencia Geovany
Publication year - 2018
Publication title -
international journal of applied pharmaceutics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.238
H-Index - 15
ISSN - 0975-7058
DOI - 10.22159/ijap.2018v10i5.27982
Subject(s) - dissolution , atenolol , wetting , cyclodextrin , chromatography , chemistry , starch , nuclear chemistry , solvent , croscarmellose sodium , absorption (acoustics) , dispersion (optics) , sodium , materials science , dosage form , organic chemistry , medicine , magnesium stearate , composite material , physics , blood pressure , optics , radiology
Objective: The aim of this current research was to formulate and analyze the characteristics of atenolol-β-cyclodextrin which using co-process crospovidone-sodium starch glycolate as the disintegrants. Evaluation which has been conducted on orally disintegrating tablets consist of wetting time, water absorption ratio, in vitro dispersion time, and dissolution.Methods: Inclusion complex of atenolol-β-cyclodextrin which were prepared using solvent evaporation method, then formulated using co-processed crospovidone-sodium starch glycolate 1:1 (formula 1) and 1:2 (formula 2) into orally disintegrating tablets by direct compression technique. Orally disintegrating tablets of atenolol-β-cyclodextrin using a physical mixture of crospovidone-sodium starch glycolate 1:1 (formula 3), 1:2 (formula 4) was also prepared as a control. The prepared formulations (F1-F4) were evaluated by several parameters such as wetting time, water absorption ratio, in vitro dispersion time, and dissolution.Results: Orally disintegrating tablets of atenolol-β-cyclodextrin using co-processed crospovidone-sodium starch glycolate 1:1 (formula 1) showed shorter wetting time (53.53±2.26 seconds) and in vitro dispersion time (47.44±2.49 seconds) compare to the other formulas. Formula 1 also exhibited the highest dissolution efficiency compare to the formula which was used in the physical mixture. The results of this study also revealed that there was a high correlation between in vitro dispersion time and dissolution efficiency of atenolol-β-cyclodextrin orally disintegrating tablets.Conclusion: Orally disintegrating tablets of atenolol-β-cyclodextrin showed enhanced dissolution efficiency due to the presence of inclusion complex and co-processed crospovidone-sodium starch glycolate. Formula 1 was found to be the best formula in this study. This formula effectively reduces in vitro dispersion time, hence the dissolution efficiency became higher.