z-logo
open-access-imgOpen Access
SELF-ASSEMBLED CHITOSAN NANOPARTICLES FOR PERCUTANEOUS DELIVERY OF CAFFEINE: PREPARATION, CHARACTERIZATION AND IN VITRO RELEASE STUDIES
Author(s) -
N. Hassan,
Shariza Sahudin,
Zahid Hussain,
Mumtaz Hussain
Publication year - 2018
Publication title -
international journal of applied pharmaceutics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.238
H-Index - 15
ISSN - 0975-7058
DOI - 10.22159/ijap.2018v10i4.25947
Subject(s) - zeta potential , dispersity , sonication , particle size , fourier transform infrared spectroscopy , nanoparticle , chitosan , nuclear chemistry , chemistry , dynamic light scattering , transmission electron microscopy , scanning electron microscope , chemical engineering , chromatography , materials science , nanotechnology , organic chemistry , engineering , composite material
Objective: Chitosan (CS)–tripolyphosphate (TPP)–nanoparticles (NPs) have been extensively studied during the past few decades due to their well-recognized applicability in various fields. The present study attempts to optimise the development of these nanoparticles to enhance the percutaneous delivery of caffeine.Methods: CS-TPP-NPs were prepared via ionic cross-linking of CS and TPP and were characterized. The influence of several formulation conditions (CS: TPP mass ratio and concentration of caffeine) and process parameters (stirring speed, stirring time and ultra-sonication time) on the colloidal characteristics of CS-TPP-NPs were investigated and the resulting nanoparticles were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and x-ray diffraction (XRD) analyses. Physicochemical properties, including particle size, zeta potential and polydispersity index (PDI) were examined, and in vitro release studies were conducted to ascertain the release profile of caffeine from the nanoparticles. In addition, the colloidal stability of the prepared NPs was also assessed on storage.Results: Process parameters appeared to exert a significant effect on the physicochemical characteristics of the CS-TPP-NPs. The CS-TPP-NPs prepared under optimum conditions (CS concentration of 0.2 mg/ml, CS: TPP volume ratio of 25:12 ml, stirred at 700 rpm for 60 min, with 0.97 mg/ml caffeine concentration and treatment with low ultra-sonication for 30 min) had shown a mean particle size of ~143.43±1.69 nm, zeta potential of+43.13±1.10 mV, PDI of ~0.30±0.01. A drug loading capacity and encapsulation efficiency of 48.89% and 60.69%, respectively, were obtained. Cumulative release study for drug-loaded CS-NPs was significantly (p<0.001, paired t-test) higher (58.7% caffeine released) compared to control formulation (41.5% caffeine released) after 72 h. Stability studies conducted for 28 d showed that caffeine-loaded CS-NPs degraded much quicker when stored at 25 ⁰C than 4 ⁰C. It was also noted that caffeine-loaded CS-NPs in the freeze-dried form were unstable as the surface charge of nanoparticles dropped from positive zeta potential to-3.55 mV within 2 d at 4 ⁰C and at 25 ⁰C, surface charge dropped to-3.16 mV within 14 d of the experiment.Conclusion: Chitosan (CS)–tripolyphosphate (TPP)–nanoparticles (NPs) appear to be a promising strategy to achieve sustained percutaneous delivery of caffeine.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here