
APPLICATION OF RESPONSE SURFACE METHODOLOGY IN OPTIMIZATION OF PACLITAXEL LIPOSOMES PREPARED BY THIN FILM HYDRATION TECHNIQUE
Author(s) -
Amol A. Tatode,
Arun T. Patil,
Milind J. Umekar
Publication year - 2018
Publication title -
international journal of applied pharmaceutics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.238
H-Index - 15
ISSN - 0975-7058
DOI - 10.22159/ijap.2018v10i2.24238
Subject(s) - response surface methodology , liposome , dispersity , factorial experiment , zeta potential , chromatography , phospholipid , particle size , chemistry , analytical chemistry (journal) , materials science , mathematics , nanoparticle , nanotechnology , membrane , polymer chemistry , biochemistry , statistics
Objective: The present investigation was aimed to optimize the formula of paclitaxel-loaded liposomes (PTL) by using the application of response surface methodology (RSM).Methods: Paclitaxel-loaded liposome (PTL) was optimized by response surface methodology based on two parameters, namely, percent entrapment efficiency (% EE) and percent in vitro drug release at 12 h (% DR). The liposome formula was prepared using 32 factorial design, and the selected independent variables were, phospholipid (phospholipon 90G) and cholesterol (CH) concentrations. Nine formulas of paclitaxel-loaded liposome were prepared by thin film hydration technique (THF). The entrapment efficiency, in vitro release studies and drug content, were evaluated using on UV-visible spectrophotometer at λmax-230 nm. The developed PTL formulation vesicle morphology, particle size, polydispersity index (PDI) and zeta potential (ζ) were evaluated by Motic digital microscope and Malvern zetasizer respectively.Results: Using response surface methodology the estimated coefficient values obtained for independent variables in the regression equations, exhibited that the phospholipid (PL90G) and cholesterol (CH) molar concentration was observed to be highly influencing variables in optimizing % EE (86.67±0.67) and % DR (63.49±1.21). In the prediction of % EE and % DR values, the percent relative errors (PRE) was found to be low (–0.290%) and (0.058%) respectively. This suggests that design-developed model was found to be suitable for PTL formulations and thus, validate the model.Conclusion: Experimental results show that the observed responses were in close agreement with the predicted values and this demonstrates the reliability of the RSM in an optimization of % EE and % DR in paclitaxel liposomal (PTL) formulations.