
DESIGN, FORMULATION AND EVALUATION OF LIPOSOME CONTAINING ISONIAZID
Author(s) -
Akshay Singha Roy,
Sudipta Das,
Arnab Samanta
Publication year - 2018
Publication title -
international journal of applied pharmaceutics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.238
H-Index - 15
ISSN - 0975-7058
DOI - 10.22159/ijap.2018v10i2.24174
Subject(s) - liposome , differential scanning calorimetry , particle size , isoniazid , chromatography , phosphatidylcholine , chemistry , scanning electron microscope , particle (ecology) , dosage form , vesicle , analytical chemistry (journal) , materials science , composite material , membrane , medicine , biochemistry , pathology , tuberculosis , phospholipid , physics , oceanography , thermodynamics , geology
Objective: The objective of the present study was to formulate and evaluate liposomes loaded with isoniazid.Methods: Liposome of isoniazid was made by thin layer film hydration method. L-α-phosphatidylcholine and cholesterol were used to make multiamellar vesicles. Six batches of liposomes were prepared based on the different weight ratio of L-α-phosphatidylcholine and cholesterol. Differential scanning calorimetry (DSC) study conducted to study in any incompatibility.Results: The prepared liposomes were evaluated by particle size analysis, entrapment efficiency, release study and stability study. Particle sizes were determined from the scanning electron microscopy (SEM) photographs. When particle frequencies were plotted against particle diameter in the histogram, it showed that F1 batch had a skewed distribution towards smaller liposomes while F6 shows a proper bell-shaped curve with a mean at 225 mm. The percentage entrapment efficiency was found to be 8.99 ± 0.15 to 4.19 ± 0.12 % respectively. From the release profile, it was seen that F1 batch was fastest and F6 was slowest to release the drug. The satisfactory batch F1 was packed in Eppendorf tube and stored at 4 °C temperature for one month. At the end of one month, the samples were analyzed for their physical properties, drug entrapment and in vitro release profile. The percentage release was found to be 96.5 ± 3.2 after 4 h.Conclusion: The F1 batch showed most promising results compared to other. No significant change was found during one month’s stability study of final batch (F1).